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ABSTRACT: Since the work of van der wWaals on gases and Mie and
Grilneisen on soiids which produce an equation cf state of the form

P = G(v,T) NKT/v + po(v) ,

mzny thecretical equations of state have been developed which cun
be put into the above fcrm, Despite this fact it has been aimost
a universal fad to describe equations of state through the dimen-
sionless compressibility factor, P(v,T) = pv/NKT instead. It is
shown here that considerable useful information is discarded when
the latter form is used. In particular an analysis of p, and
G{(v,T) for the Lennard-Jones Devonshire free volume theory and
the eguation of state results obtained by the Monte Carlo method
have shown that these approaches lead to essentially the Mie-
Grlneisen equation at high density when the temperature is low
enough. At Ligher temperatures for high density and for all
temperatures at lower densities the two theories come close to
the usual theories for dense fluids. 1In addition, the functional
relations for G(v,T) are sufficiently simple to be replaced by
analytic functions to faciiitate the applicaticn of the theories
to practical problema. It should even be possibie to empirically
improve on the original theories by making the empirical eguations
conform to our best knowledage of the states, solid or fluid, being
described. Por illustration an analytic fit to the Monte Carlo
result for s Lennard-Jones 6-12 potential is presented. A break-
down of Jlennard-Jones result for the second virial coefficient is
appunded.
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ON THE EQUATION OF STATE OF COMPRESSED LIQUIDS AND SOLIDS

This report !+ an analyais of two classically important equations
of state for molecular systems of non-ionic, non-metallic mole-
cules. The immediate purpose of this aralysis was to arrive at

a better understanding of the equation of state problem for a
simple £1luid or solid so that a better equation of state can be
formalated for the description of detonation parameters; pressure,
temperature, density, velocities, isentrcpes, and composition
for the detonation of condensed explosives. The resulits described,
however, should have a much broader application. The analytic
form of an equation of state u3ze here or a similar treatment,
depeiiding on the model, makes it rossible to critically examine
many theoretical equations. This would assist the writer and the
user in establishing the merits, range of validity, and defects
of each theory.

The work was performed under NOL Tasvk MAT O3L 000/2R Ol1 Ol Cl
Pr052; pDynamic Properties of Solids.

A related report which discusses this work with more emphasis
on the problem of detonation parameters was presented by the
author, at the 12th International Symposium on Combustion at
Poiters, Prance on 15 July 1968. It will be published in the
proceedings which will probably be available in late 1369.
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1. INTRODUCTION

Since the introduction of the virial expansion by H. Kammerlingh
Onnes! for the compressibility factor P(v,T) = pv/NKT of non-ideal
gases it has been common practite to describe the behavior of equations
of state by showing how the function FP(v,T) varied with volume and
temperature. Though there may be merit in this description when the
density is moderate, i.e., below the normal censity of a liquid, it
now appears that a more descriptive dimensionless factor is available
for states ranging in density all the way from the ideal gas to com.
pressed solids or liquids. The parameter is obtained by analogy to
the treatment of solids and to the van der waals equation. The
equation of state of solids has been successfully treated by splitting
the pressure into two dominant terms; one which is purely volume
dependent and derivable from an average potential function and one
which is largely thetrmal in nature related to the lattice vibrations
in the solid._This approach leads to an equation of state attributed
to Mie and Gruneisen® which for a monatomic 80lid may be written as

p = ¥C,T/v - dE /dv (1)

for which the energy is assumed to be separable and given by

A E = E (T) + E, (V) (2)
with E, (T) = JCy(T)dT. The dimensionless coefficient y, the
Gruneisen parameter, is treated as a constant or a function of v

onlv. FPor monatomic solids above the Debye temperature Cy is essen-
tially a constant having the value 3Nk, and hence the first term on
the right of Eq. (1) could be written as

ych/v = GNk T/v . (3)

By substituting Eg. (3) into Eq. (1) with G = G(v,T) one arrives at
a very general equation of state which not only describes a solid
state but also is of use in describing liquid and gaseous states, i.e.

p = G(v,T)NKT/v + p, (4)

in which p, is an internal pressure term derived from B, (v). The
compregsibility factor for Eq. (4) is

F(v,T) = G(v.T) + p.Vv/NkT . (s)

In the case of compressed solids, p, is the dominant term for p.
Consequently, it is far more useful to examine the behavior ¢f G and
Po independently rather than P. It is readily seen that Eq's. (4)
and (5) are equaiiy applicable to states of moderate density. In the
limit for large volumes p,—» 0 and G — 1 to give the ideal gas
equation. Over the range from ideal cgas to about that of a norral
liquid, one might expect G tc increase with decrease of volume in a
way similar to the behavior of the van der Waals equatiop or typical
virial equations such as the Boltzmann equation of state for a gas
composed of hard or compressible spherical molecules. In the range

References may be found on page ©
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of volume from the normal solid and below, on the other hand, the
behavior of the normal solid is that G should decrease with decrease
in volume. This leads us to expect that G shoul ave a maximum
value at volumes near that of the normal liquid state. Purthermore,
unlike the compressibility factor G should fall below 1 only if
attractive terms other than in p, are present. It thus appears that
an examination of G rather than F would shed considerable light on
(a) the compression and compressibility of very dense "gases" such
as the explosion products in a detonation of a condensed explosive,
{b) the states reached by shock compression of liquids, or solids,
and (c) the transition from the liquid to the solid state.

The utility of Eq. (4) is further enhanced if we consider it in
the 1i-'ht of a well-known thermodynanic relation

P + (RE/3V)q = T(ap/3T), . (6)

If, in addition, Eq. (2) is generalized to

E = E (V,T) + B (V) (7)

we find it useful to define three pressure terms:
a. a volume dependent internal pressure, p, = -dE, /dv,
b. an internal pressure term which depends on both volume
and temperature, p, = -(3E, /3v)y, and
c. a thermal pressure term, pp = T(3p/3T)y.
Eq. (6) then becomes

p = T(dp/3T),, - dEa/dv - (3E,/3V)y = Pp + Po * P - (8)

It is easy to see that p, arises from a volume dependence of C_. By
definition ¢, = (ME/AT)y = (3E,/3T)y. Then (3Cy/dV)p = a'a,/a¥av =
-3p, /3T. Thus if Cy depends on v, p, will be a function of T and,
therefore, non zeroc. If Cy is independent of v, p, must vanish. Por
Eq. (4) pp = GRT/v + RT”(3G/3T)y/v and p, = -RT* (ac/a'r)l,/v. Thus

if G is a function of T, p, wilY be non-zero. This indicates that G
will be a function of T if Cy is a function of v and conversely.

In the original Grineisen expression, Eq. (1), y, as applied to
metals and inorganic solids is treated as a constant or as a function
of v only. But also Cy is usually considered to he constant (the
equation best applies above the Debye temperature). If Cy is volume
dependent then y may also have to be a function of T. In that case,
Eq. (4) may be just as good a working basis as Eq. (1).

An examination of experimental data for the behavior of G in the
liquid-solid regions of molecular materials is not easy. There are,
however, two theoretical approaches which have been aimed to describe
this density region for spherical molecules. Both are based on pair-
wise additivity of pair potentials for an extended system of molecules.
They are the free volume equation of state exemplified by the treat-
ment of Lennard-Jones pevonshire*’®, LJD, and the Monte Carlo, MC,
equation of state treatment®’?. Both of these theoretical approaches
confirm in a general way the expected behavior of G(v,T). We there-

2
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fore recommend the form of Eq. (4) in preference to the usual forms?
for F(V,T) as a better description for the equation of state. We
propose to call G(v,T) a generalized GrlUneisen parameter. The LJD
and MC results will be discussed below. Both approaches also confirm
the expected behavior of the specific heat, Cy, in going from the
gaseoug region to the region of solid densitie= T™his, tco, will be
discussed.

2. THE LENNARD-JONES DEVONSHIRE EQUATION OF STATE

Lennard-Jones and Devonshire* devised a cell model to describe
the equation of state of a liquid (or volid?) in the region from
critical density to very high density. In this model *he pressure
2rises from two terms; one due to the mean spacing of moleculez in
a face-centered cubic configuration, p, (v), and one due to the motion
of each molecule in a cell bounded by its near neighbors considered
to be at rest, pp + p;.

A reexamination by the present author of the excess poterijial
experienced by a molecule in 2 cell shows that for v/v, about 1
or slightly less than 1 (v, = Nr,® /2Z/2 for an PCC configuration;
X, is the meclecular separation at the minimum of a pair potential),
the extra potential due to displacement, r, of the central molecule
is approximately quadratic in r whern the displacement is small. This
implies near to harmonic motions in the system and therefc—e the LJD
equations should be representative of a nearly harmonic solid at
these densities if the temperature is low. As the density or dis-
placement increases the excess potential becomes less harmonic; the
Grilneisen parameter should then be that of an anharmonic solid. G
will here be less than the values G, computed from the potentisi
Lunction in the zero degree limit. When v/v, is about 1.2 and greater
the excess potential begins to look more like a square-well. In this
volume region the equation of state should appear to be more like that
of a dense gas. At very large volumes the LJD solution is forced to
give the 1deal ga- limit. Thus an examination of G(v,T) for the LJD
model should not only show the solid-like behuvior at high density
and a gas-like behavior at low but also give informatien
2bout the temperature dependence of the GrUneisen parameter.

The original LJD equations with refinements to include second
and third nearest neighbors for the excess potential have been
tabulated by wentorf, et al® from coaputer runs with the LJ 6-12 pair
potential. The resulting equation of state is of the form of Eq. (5)
with

G(v,T) =1 +(4%:ﬁfkT) * A (9)
and
T V/NKT = (12cm/kT)° b {10)

whare ¢ is the ma ~i%ude of the pair potential minimum. In the above

A= (Vo,/v). ql/G, - (VO/V)? %/G‘ (i)

P
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and
B = 2.0219 (vo/v)* - 2.4090(v,/Vv)® . (12)

(The coefficients in Eg. (12) would be 2 if only nearest nejghbors
were taken intec consideration; here all pair potentials are considered
for computing the average potential.) The g's and G, are functicas

of T as well as v. They are represented by integrals which cannot

be expressed analytically, hence they were tabulated. Two tables

are of interest to us here; (a) the compressibility factor, P(v,T)

and (b) the specific heat of gas imperfection vs reduced temperature

8 = kT/¢yn and reduced vclume v/v,. The table of Cy-Cy (ideal)

shows the specific heat to increase from the ideal gas value

Cyi ™ 3Nk/2 to very nearly the classical solid value 3Nk at high
density and moderate temperature. The other table is not so explicitly
clear. P(v,T) ranges from 1 at low density, high temperature to
negative values at v/v,>1 at low temperature and then to extremely
high values for v/vy<l at low temperatures (see Table la). The
significa... consequences of tne theory regarding equation of state are
completely obscured by not filtering out the volume dependent pressure,
Po -

Portunately G(v,T) can be easily computed from Eq's (5), (10),
and (11) since B in Eq. (12) is a aimple analytic expression. This
nas been done for the values of P(v,T) shown in Table la. The
results are shown in Table 1b and in Pigure 1. Two consequences of
tue WID theory are immediately apparent from Figure 1. Pirst, at
low temperature G(v,T) has a maximum which shifts toward lower volume
as the temperature increases. Second, the function is greater than
1 over a wide temperature range and the isotherms show an essentially
monotone shift to the left as & increases. It appears that isotherms
could be readily fit by an analytic function to connect the LJD
equation to a complete analytic form to any desired degree of
precision. 1In addition, the use of p, and G to describe the
equation of state provides greater flexibility for a closer exami-
nation of tne effect of changes in the form of the potential func-
tion on the equation of state.

3. THE MONTE CARLO EQUATION OF STATE

The Monte Cario method for an equatior. of state due to Metropolis®
et al has been evaluated by Wood and Parker® for the LJ 6-12 potential.
In the paper by Pickett” graphs of A(E'/RT) and A(gv/RT-1) are pre-
sented® to show the consequences of the numerical caiculations.

Also shown are some results for the LJD free volume theory.!® we
note that A{(pv/RT) {s, in fact, G(v,T) = (p-p,)Vv/RT.* With this
interpretation it becomes clear that Pickett and Wood recognized the
merit of subtracting st the volume dependent pressure. Their re-
sults for £°/RT (the excess energy due to specific heat being a func-
tion of volume as well as temperature) indicates for MC that at v/v,<l
an additional 3pecific heat of about 3INk/2 is added to the ideal

gas value as required in going from an ideal gas to a classical
solid. The G(v,T) behavior for MC, Pigure 2, is qualitatively
similar to t'at of LID. A much sharper maximum (essentially a peak)

4
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is seen for the isotherms and the curves are flatter to the left of
this break. The 8 = 2.74 isotherm was not fit by a curve in
Reference 7, but the sharp peak which is indicated is probably real.
This behavior was predicted near the melting point by Lennard-Jones
and Devonshire!! in their theory of melting.

The Monte Carlo method appears to be a powerful tool for
estaklishing the equaticn of state in the high density regime. what
we have learned from its use with the LJ potential can serve as a
guide for generating the thermal G(v,T) term for other potentials
as well. It appears to give a far better description of the prcp
osrties of a molecular aggregate than does the cell model of Lennard-
Jones and Devonshire. It would now be extremely valuable to extend
the MC computation to use other potential functions, e.g. the Morse
potential or the modified Buckingham (Bxpo-6) potential which are
believed to be more accurate descriptions for non-ionic non-metallic
substances at high de=nsit:. In the absence of this knowledge, we
attempt in the next section to formulate an analytic equation of
state based on the preceding work of Pickett and wWood.

4. AN EMPIRICAL PIT TO THE MONTE CARLO EQUATION OF STATE

Of the two examples given, the MC method appears to be the more
accurate. The model in contrast to the cell model is truly solid-
like in the dense region and gas- or liquid-like in the less dense
region. The behavior of G(v,T) suggests that the high density branch
can be represented by a generalized Griineisen parameter for a quasi-
harmonic solid while the liquid-gas branch at lower densities might
be represented by a virial expansion using a temperature dependent
covolume parameter. (The curves on the right of Figure 2 show the
volume to vary approximately as 1/8'74¢ for any constant value of
G(v,9).) wWe propose to represent the liquid-gas branch by a modi-
fication of the hard sphere virial expansion in v by replacing the
constant covolume b with a temperature dependent covolume b(T) or
b(®) varying as /2“4 . This temperature dependence is in agreement
with the behavior in the second virial coefficient result cf Lennard-
Jones! ?33

The virial equation (Eq. 3.6-1 of Reference 1) is used to de-
fine G(v,T) as

G(v.T) =1 + B(T)/v + C(T)/v> + D(T)/V ... .... (13)
in which B, C, and D, etc., are related to the repulsive part of the
second virial coefficient as formulated in Reference (see Appendix
A, 5q. (A-4)). we assume’

B(T) = (T} =D
c{T) = .625 b

D(T) = .2869 b (14)

Ty = .115 1t

W
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where b(T) = C/7 T(3/4)By /8 /¢ = 1.7330 CB,/2'/¢ for the IJ (6-12)
pctentia). The ~quation of state for the moderate density region

(8 2 2.7) is completed by adding on the volume dependent pressure
term as given in Eg. (12). The attractive part of the second virial
coefficient as approximated in Eq. (A-4) is omitted. The complete
eguation writter. in terms of 8 is:

Dy = Nemﬂ G(v,n) +

12Nem[2,0?19 (Va/V)4 - 2.4090 (vo/v)%] , {15)
G(v,8) =1 + x + .625x® +.2869% + .115x* ; (16)
where # = b(T) /v . (17)

Yor comparison with Pigure 2 it is necessary to express B, in
terms of v,. From the definitions v, = NZ r,%/2 and B, = 2™N0,>/3,
and from the relation (0,/re)® =7 we find By = 2mv,/3. Good fit
of Zq. (16) to the MC data is found when ¢ = 0.91 provided the fifta
virial coefficient E(T) is zero, Figure 3. When the 5 virial co-
efficients are used the function is too stiff, i.e. it rises too
rapidly with decreasing v/v,. It must be emphasized that Eq. (15)
is limited to the fluid region and cezses to apply when the solid
branch is reached. Por the solid region we propose a volume
dependent GrlUneisen term of the form

G, () = gq + g (v/vo)? . (18)

The MC results suggest g4 = 6.3, G, = 3. Gg(v), with these con-
stants 1s shown in Figure 3. Eq. ( ) with these constantz
approvimates 0.9 times the Dugdale-MacDonald turmula result for

a nearest neighbor calculation of the Grineisen parameter. In
defining the equation of state the lesser of the values Gg(v)

or G(v,8) is to be used. The equation of state is. in fact two
equations. There will be an obvious discontinuity in the partial
derivative (ap/av)T at the volume at which G(v.T} = Gg(v). Through
this volume region there will be a first or second order transition
and free en~rgy arguments can be used to establish the equilibrium
conditions.

[ o4

5. DISCUSSION

The utility of separating variables and thereby defining a
thermal pressure term for a general eguation of state should be quite
clear from the exampies cited. By so doing it becomes possikle to
examine the results of complex statistical mechanical calculstions
and arrive at an understanding of their phytical implication much
moie clearly. Examination of G(v.T) for the LJD cell model suggests
that the model is more descriptive of an anharmonic solid than of a
fluid scr v/vy>l. By comparison with the Monte Carlo method the
etfect of imposing lorg range order in a region where such order
does not exist beccomes readiiy apparent. This point is not revealed
waen one examines and compares F(v,T) for the two methods.

6
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The logical separation of variables from the theoretical
calculations simplifies the syntheses of empitical equations. One
which can be readily handled is given. The empirical relations so
derived can be more easily used checked and modified tc reproduce
experimental thermodyramic properties. Comparison of the LJ second
virial coeificient results with MC and LIM indicates that o, (v) is
incorxectly definad by the mean lattice positions of molecules when
the volume is large. A more precise statistical description is needed
to bridge pg (v) in the vclume region from the normal solid te the
ideal cas.

At this point a comment con the hard sphere molecule and the
virial coefficients for it appear to be in order. Data of Alder and
Wainwright!* on MC calculations for the hard sphere molecule has been
plotted in Figure 2. To plot these curves the hard sphere diameter
has heen taken to be o?, the value of r on the LJ potential at which
the potential is zero [vy (Alder) = vq (this work) /Z2/2]. It is
interesting to note that the computer runs show two distinct branches,
solid and fluid. The order-disorder transition is seen to occur,
surprisingly, at just about where it would be expected for the nor-
mal melting of real molecular solids. By comparison with the MC
results for an LJ potential one sees that the contribution of the
potential function is toc determine the transition volume as a func-
tion of temperature. (The potential function also supplies the in-
ternal pressure term which is necessary tc obtain a normal melting
pcint.) PFor the hard sphere mclecule the transition is independent
of temperature since G {or F) is a function of volume only. Aaside
from its use for transition observance, the solid branch is of no
great significance. At volumes less than the transition volume G,
in real molecular systems, is dominated by an approach to harmonic
oscillation; the extremely large values of F(v) of the rigid sphere
cease to describe the equation of state behavior of real molecules
correctly.

A further conclusion which can be drawn from the solid-fluid
transition in the MC computations is that the transition is deter-
mined by the effective size of the molecule as a function of tcmpera-
ture. In this regard the recent theory of Kraut and Kennedy'® on
melting temperature vs volume would appear to be amenable to theo-
retical treatment in terms of the covolume change with temperature.

It is suggested that by an inverse relation information about the
potential function could be obtained at high density from experimental
data on melting point as a function of volume.

One last point; ir the case of rapid compression, as in a
shock wave in a liquid or disordered solid., or in a detonation of a
solid molecule, it is very likely that the solid branch for G(v,T)
will differ from the MC results of Fickett and Wood because of dis-
order. One might expect the generalized Grineisen parameter for a
disordered solid to differ from the results reported. But the
difference is unlikely to be predicted by an extension of the fluid
branch as the volume decreases. The exact behavior is a probiem yet
to be solved. A discussion on the application of the ideas presented
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here to the probiem of defining the equation of state for dense
product states of condensed explosives was presented at the 12th
Symposium on Combustion, Pnitiers, Prance in July 1968.1%
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APPENDIX A

Lennard-Jones! ?’!'3 has given a statistical mechanic solution
for the second virial coefficient based on a bireciprocal potential.
His equztions !% may be written as

2 s s/ (n-m)
B(8) = 3 ™Nr, (m/n) £(9) (a-1)
£(8) = P(y) = y’/("'m) [ 3y . f g "“'3) y’/v:n} (A-2)
T=] T
and
. (n-m)/n
y = (m/n)~"/? [ — ] (r-3)

where m and n are the attractive and repulsive exponents and ° is
the reduced temperature kT/¢y, . T(x) represeants the gamma function
of the arqument x and r, i3 the mcleculsr separation at equilibrium.
It is immediately apparent that the coefricient of £(8) is just
Nko,3 = B, so that Eq. (A-2) for P(y) is jusc B(8)/B,. Por m = E,

n =12, we find that the first term in B (from Eq. (A-2) and {(A-3)
varies as #7274, To establish the behavior of the second term,

Eq. (A-2) was solved for the two terme in B(8)/B, using a high
speed computer and a subroutine for T(x)!?’. Twenty terms were used
in the summation. The result for B(R)/B,, Table A-1, is in complete
agreement with the result published in Reference 1.

In Table A-1 b(8)/B, is defined as the first term on the right
of Eq. (A-2); A(6)/9 is defined as the second term on the right of
Eq. (A-2). Then A(8) is just equivalent to van der Waal's a. On
examining the table we find that A(8) deviates only about 14% from
a constant value 4.3 over the range from the normal boiling point to
the critical temperature (.8<8<1.4). There is a minimum in A(8)
at 8 = 1.6. Above this temperature A(A) increases very slowly with
temperature. The result indicates that B(8) above 8 = 1.6 can be
represented by an analytically simple functicn given as

B(8) = Bo[1.733/81 ¢ _ A(8)/8] : A(R) = a, + a,0/2 | (a-4)

with a, = 3.480, a, = .5282; B(#) is represented to within 1% for

8>10 and about t .03 units for 10>8>1.4., The fit could be improved

in the low temperature region if desired. The Lennard-Jones second
virial coefficient thus reduces in essence to that of the van der Waals
equation of state with the attractive term a(8) = NeyB, (a; + a,M/7?)
having a weak dependence on temperature and a repulsive term b(R) =
Bo/8'7*. 1If the term containing a, were treated as a correction %o
b(6) then “a" would be a constant.

The second virial coefficient has been solved'® for hard sphere
molecules with an attractive potential of the formu = -uo(dﬂ/r)m,
0o, being the molecular diameter. A simple approximation to the result
givan by Mayer and Mayer!® for the van der Waals ais

10
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a = 3Nbu,/(m-3) . (A-5)

Eq. (A-5) can be related to the attractive part of a bireciprocal
potential if b is taken as B, and u, is taken as the attractive
energy at the corresponding diameter, 5,. For the special case

n = 2m it then turns out that u, = 4¢,. Thus

a = 12NemBo/(m—3) (A-6)

for comparison with A(8). Por m = 6 Eq. (A-6) gives a/Ne B = 4
which is only a few per cent less than the mean value of A(8). We
have rerun the LJ second virial coefficient calculati.ns for m = 4.5,
n = 9 to see whether the dependence of A(8) on m agrees with the
predicted value, 8, of Eq. (A-6). The agreement wa~ positive. A(S)
for m = 4.5 had a minimum value of 8.30 and very nearly double thi
values shown in Table A-1 over the entire range of A computec.

There is an alternate approach for replacing the numerical
results of Table A-1 by an analytic approximation. The value of
h(2) is redefined as

b(8) /B, = 1.7330C/@8*7* (A-7)
and A(") is redefined as

A(%) = o[b(" - B(MT . (A-8)

It was found that if C = 0.91, A(?) is very nearly a constant

with the mean value being 4.1. It has its greatest value of 4.41

at 8 = 20 and least values of 3.906, 3.81 at 6 = 2 and 80 respe«tively
in the range of A from 0.8 to 80. This interpretation indicates that
over a wide range of A the attractive term may be represented as a
constant to within 10% or less. The diminished covolume parameter
defined in Eq. (A-7) is used in Section 4 for the empirical fit to

the Monte Carlo results. In that application A(f) is assumed to

be zero.

We conclude that the LJ second virial coefficient at moderate
and high temneratures can bhe renresented hv an attractive term and a
covolume both mildly temperature dependent. The attractive term is
very nearly that of hard sphere molecules with an attractive pair
potential. These findings differ with a remark by Lennard-Jones!?
which says "In the var der Waals molecular model the repulsive and
attractive parts of the field are in separate regions of s=pace and
it is not surprising that their contributions to the statistical
stress should be separable. It is not to be expected that in other
models the effects of the repuisive and attractive fields can be so
distinguished.” It should be mentioned that Lennard-Jones refers to
the second virial contribution to the internal pressure as a statisti-
cal pressure to distinguish it from p,, the derivative of E,, which at
high density is a much larger contribution to the pressure. We note
that the attractive pressure, a/v?, in van der Waals eqgiation and as
approximated here differs significantly from the attractive contribu-
tion to py in Eq. (10). The latter is of the form (const/v3).

11
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Figure 1

Fiqure 2

Figqure 3
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LIST OF PIGURES

G(v,T) = (p~-py)V/NKT from the LJD Free Volume Theory:;
circles and solid curves from Reference 5, x's

and dashed curve from Reference 10. The dimensionless
temperatures, 8§ = KI/¢, top to bottom are 0.7, 1, 2,

7, 20, 100, 150, 400. Curves labeled (a) and (b) are

G, for a solid based on the Dugdale and MacDonald formula
(Reference D. J. Pastine, Phys. Rev. 138, A767 (1965)).
(a) is calculated from the p, of %g. (I5); (b) from p,
based on nearest neighbor interactions.

G(v,T) from Monte Carlo Method, Reference 7. Values of
6 are = 100, 8= 20, A= S5, v= 2,74, The dotted
curves are for hard sphere molecules. Reference (14)
(f) = fluid branch, (8) = solid branch.

Comparison of Eq's (16) and (18) with Monte Carl~
results. Solid curves on right, Eq. (16), curve labeled
(a) Eq. (18). MC results labelled as in Pigure 2. The
dashed curve is the LJD result for 2 = 20 for direct
comparison.
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